Inorg. Chem. **2007**, 46, 10655−10658

Homolysis of the Peroxynitrite Anion Detected with Permanganate

Manuel Sturzbecher, Reinhard Kissner, Thomas Nauser, and Willem H. Koppenol*

Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland

Received July 13, 2007

The reaction of peroxynitrite with violet-colored MnO₄ aleads to the formation of green MnO₄^{2 –}. The rate constant for the reaction at pH 11.7, 5.5 mM ionic strength, and 25 °C, 0.020 \pm 0.001 s $^{-1}$, is independent of the MnO $_4^$ concentration; homolysis of ONOO⁻ to NO• and O₂•⁻ is the rate-determining step. Both NO• and O₂•⁻ react with MnO $_4^-$ with rate constants of (3.5 \pm 0.7) \times 10 6 M $^{-1}$ s $^{-1}$ and (5.7 \pm 0.9) \times 10 5 M $^{-1}$ s $^{-1}$, respectively. The activation volume and activation energy for breaking the N–O bond are 12.6 ± 0.8 cm³mol⁻¹ and 102 ± 2 kJ mol⁻¹, respectively. In combination with the known standard Gibbs energies of formation of NO[•] and O₂^{•–}, the rate of the reaction of NO• and O2•⁻⁻, and the p K_a of ONOOH, we find a standard Gibbs energy of formation of ONOO $^-$ of +68 \pm 1 kJ mol⁻¹, and of ONOOH of $+31 \pm 1$ kJ mol⁻¹.

Introduction

Peroxynitrite¹ is formed from the diffusion-controlled reaction of $O_2^{\bullet-}$ with NO[•], and $k = (1.6 \pm 0.3) \times 10^{10}$
M⁻¹s^{-1,2} ONOO⁻ is fairly stable at pH values above 10. In $M^{-1}s^{-1}$.² ONOO⁻ is fairly stable at pH values above 10. In the protonated form, ONOOH isomerizes to $NO₃⁻$ with a rate constant of $1.2 s^{-1}$ (reaction 1).³ The p K_a of the ONOOH/ $ONOO^-$ system is $6.5-6.8$, depending on the ionic strength.³ Homolysis of ONOO⁻ is thought to occur with a rate constant of 0.017 s⁻¹ (reaction 2).

$$
ONOOH = NO3- + H+
$$
 (1)

$$
ONOO^{-} = NO^{\bullet} + O_2^{\bullet -}
$$
 (2)

The first investigation of the kinetics of reaction 2 was made with tetranitromethane, which consumes O_2 ⁻ very rapidly with a rate constant of $2 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$.⁴ When we

(4) Mere´nyi, G.; Lind, J. *Chem. Res. Toxicol.* **¹⁹⁹⁸**, *¹¹*, 243-246.

10.1021/ic7013978 CCC: \$37.00 © 2007 American Chemical Society **Inorganic Chemistry,** Vol. 46, No. 25, 2007 **10655** Published on Web 11/15/2007

reinvestigated the homolysis of ONOO⁻ with tetranitromethane, we reported a rate constant of $0.005-0.0185$ s^{-1} that appears to be dependent on NO $^{\circ}$ concentration, although the presence of NO• should have blocked the formation of trinitromethanide.⁵ However, other investigators reported inhibition by NO• . 6,7 Lymar and Poskrebyshev used the methyl viologen radical to probe the kinetics of the homolysis reaction and obtained a rate constant of 0.017 \pm 0.001 s⁻¹.⁸ The methyl viologen radical does not react with nitrogen monoxide but reacts with $O_2^{\bullet-}$ with a rate constant of $(3.5 \pm 0.2) \times 10^9$ M⁻¹s⁻¹. Thus, nitrogen monoxide
accumulates and the rate of superoxide production decreases: accumulates, and the rate of superoxide production decreases; this was observed and taken into account.⁸ As we found only a small effect of nitrogen monoxide on the peroxynitritetetranitromethane system,⁵ we set out to find a different detection reaction.

In 1929, it was reported that the reaction of peroxynitrite with violet $MnO₄$ ⁻ leads to the formation of green $MnO₄$ ²⁻, (reaction 3^9 and, in 1964, this reaction was used for the determination of ONOO⁻ concentration by potentiometric titration.10 Although the reaction was first reported nearly

- 266.
- (10) Pape´e, H. M.; Petriconi, G. L. *Nature* **¹⁹⁶⁴**, *²⁰⁴*, 142-144.

^{*} To whom correspondence should be addressed. E-mail: koppenol@ inorg.chem.ethz.ch, Phone: 41-44-632-2875, Fax: 41-44-632-1090.

⁽¹⁾ Systematic names and *trivial* names in italics: ONOO⁻, oxidoper-
oxidonitrate(1-), *peroxynitrite*; ONOOH, (hydridodioxido)oxidonioxidonitrate(1-), *peroxynitrite*; ONOOH, (hydridodioxido)oxidoni-
trogen, *peroxynitrous acid*; NO•, oxidonitrogen(•) or nitrogen mon-
oxide *nitric oxide*: Os[•], dioxide(•1-) *superoxide*: O₂ dioxygen: oxide, *nitric oxide*; O₂^{•−}, dioxide(•1−), *superoxide*; O₂, dioxygen;
CO2^{•−}, dioxidocarbonate(•1−), *carbonate radical*: MnO4[−], tetraoxi-CO₂^{•-}, dioxidocarbonate(•1–), *carbonate radical*; MnO₄⁻, tetraoxi-
domanganate(1–), *permanganate*: MnO₄^{2–}, tetraoxidomanganate(2– domanganate(1 –), *permanganate*; MnO₄^{2 –}, tetraoxidomanganate(2 –), *manganate*; Connelly, N. G.; Damhus, T.; Hartshorn, R. M.; Hutton, domanganate(1-), *permanganate*; $MnO₄²⁻$, tetraoxidomanganate(2-A. T. *Nomenclature of Inorganic Chemistry. IUPAC Recommendations 2005*; Royal Society of Chemistry: Cambridge, U.K., 2005.

⁽²⁾ Nauser, T.; Koppenol, W. H. *J. Phys. Chem. A* **²⁰⁰²**, *¹⁰⁶*, 4084- 4086.

⁽³⁾ Kissner, R.; Nauser, T.; Bugnon, P.; Lye, P. G.; Koppenol, W. H. *Chem. Res. Toxicol.* **¹⁹⁹⁷**, *¹⁰*, 1285-1292.

⁽⁵⁾ Nauser, T.; Merkofer, M.; Kissner, R.; Koppenol, W. H. *Chem. Res. Toxicol.* **²⁰⁰¹**, *¹⁴*, 348-350.

⁽⁶⁾ Goldstein, S.; Czapski, G.; Lind, J.; Mere´nyi, G. *Chem. Res. Toxicol.* **²⁰⁰¹**, *¹⁴*, 657-660. (7) Lymar, S. V.; Khairutdinov, R. F.; Hurst, J. K. *Inorg. Chem.* **2003**,

⁴², 5259-5266. (8) Lymar, S. V.; Poskrebyshev, G. A. *J. Phys. Chem. A* **²⁰⁰³**, *¹⁰⁷*, 7991-

^{7996.} (9) Gleu, K.; Roell, E. *Zeitschr. Anorg. Allg. Chem.* **¹⁹²⁹**, *¹⁷⁹*, 233-

eight decades ago, no data regarding the kinetics or a mechanism have been published. We report here that $ONOO^-$ reduces MnO_4 ⁻ in a reaction that is zero-order in permanganate.

$$
2MnO4- + ONOO- + 2OH- = 2MnO42- + NO2- + O2 + H2O (3)
$$

Materials and Methods

Chemicals. ONOO⁻ was synthesized from NO^{\cdot} and (Me₄N)O₂ according to the method of Bohle et al.¹¹ NO $^{\circ}$ and argon were obtained from PanGas. All of the other chemicals were purchased at the highest grade available. Deionized water was purified with a Millipore Milli-Q unit. ONOO⁻ solutions in 10 mM KOH were freshly prepared for each experiment and stored in an ice bath. All of the stock solutions were protected from light.

Instrumentation. Kinetics experiments were carried out with OLIS RSM 1000 and Applied Photophysics SX 17MV stoppedflow spectrophotometers operating in the symmetric mixing mode at ambient pressure and 25 °C. For each experiment, the mixed solution from the stop syringe was collected, and the pH was measured with a Metrohm glass electrode.

An Applied Photophysics SX 18MV stopped-flow spectrophotometer was used for the determination of the activation energy. The temperature range was $15-55$ °C at ambient pressure (ca. 950 mbar). The decay of $MnO₄$ ⁻ was followed at 524 nm, and the formation of $MnO₄²⁻$ was monitored at 420 and 610 nm.

High-pressure stopped-flow experiments were carried out with a Hi-Tech HPSF-56 equipped with a diode-array spectrophotometer, which has been described previously.^{12,13} The pressure range was ⁵-175 MPa. Absorbance changes at 370-750 nm were followed at 25 °C and pH 11.7. Kinetics data collected at 420, 524, and 610 nm were analyzed, and reaction rates and constants were extracted with *KaleidaGraph* software.

Pulse radiolysis experiments were carried out by irradiation of the samples with a Febetron 705 accelerator as described earlier.¹⁴ All of the solutions were saturated with $O₂$ (1.16 mM, corrected for pressure and ionic strength)¹⁵ and then irradiated directly after mixing in the symmetric mode.

Errors are reported as $t * s / \sqrt{n}$ at the 95% probability level, where *n* is the number of samples, s/\sqrt{n} is the standard deviation, and t^* is the distribution over $n - 1$ degrees of freedom, unless otherwise indicated.

Results

The decay of $MnO₄⁻$ (50–500 μ M) observed at 524 nm
d the formation of $MnO₄²$ observed at 420 and 610 nm and the formation of $MnO₄²$ observed at 420 and 610 nm upon mixing with $ONOO^{-}$ (20 μ M in 5 mM KOH) in aqueous solution at 25 °C over a time scale of 200 s at pH 11.7 are shown in Figure 1. Furthermore, the figure shows that the observed rates of both decay and formation are

- (11) Bohle, D. S.; Hansert, B.; Paulson, S. C.; Smith, B. D. *J. Am. Chem. Soc.* **¹⁹⁹⁴**, *¹¹⁶*, 7423-7424.
- (12) Bugnon, P.; Laurenczy, G.; Ducommun, Y.; Sauvageat, P. Y.; Merbach, A. E.; Ith, R.; Tschanz, R.; Doludda, M.; Bergbauer, R.; Grell, E. *Anal. Chem.* **¹⁹⁹⁶**, *⁶⁸*, 3045-3049.
- (13) Kissner, R.; Thomas, C.; Hamsa, M. S. A.; van Eldik, R.; Koppenol, W. H. *J. Phys. Chem. A* **²⁰⁰³**, *¹⁰⁷*, 11261-11263.
- (14) Merkofer, M.; Domazou, A. S.; Nauser, T.; Koppenol, W. H. *Eur. J. Inorg. Chem.* **²⁰⁰⁶**, 671-675.
- (15) Koppenol, W. H.; Butler, J. *Ad*V*. Free Radical Biol. Med.* **¹⁹⁸⁵**, *¹*, $91 - 131.$

Figure 1. Observed rate constants for the decay of $MnO₄$ ⁻ with 20 μ M ONOO⁻ as a function of MnO₄⁻ concentration at pH 11.7 and 25 °C. Inset: Decay of MnO₄⁻ (50-500 μ M) with 20 μ M ONOO⁻ at 524 nm Inset: Decay of MnO_4^- (50–500 μ M) with 20 μ M ONOO⁻ at 524 nm (red) and formation of MnO_4^{2-} at 420 nm (green) and 610 nm (blue) at pH 11.7 and 25 °C. Rates of decay of $MnO₄$ ⁻ and of formation of $MnO₄$ ²⁻ are independent of the $MnO₄$ ⁻ concentration.

Figure 2. Dependence of the rate constants for the homolysis of peroxynitrite on pressure at 40 *μ*M ONOO⁻, 400 *μ*M MnO₄⁻, pH 11.7, and 25° C.

independent of $MnO₄$ ⁻ concentration, and a first-order rate constant of 0.020 ± 0.001 s⁻¹ at an ionic strength of 5.5 mM and 25 °C was obtained. All of the concentrations are those after mixing. In control experiments, we mixed $NaNO₂$ (10 μ M) with MnO₄⁻ and followed at 300 and 524 nm whether a reaction took place; no absorbance changes were observed during the 200 s analysis period. We also verified that $MnO₄$ is not decomposed by hydroxide alone at pH 11.7.

If the bond scission of $N-O$ were the rate-determining step, the reaction rate would be inversely proportional to pressure. Figure 2 shows the rate of reaction as a function of pressure up to 175 MPa; the volume of activation, ∆*V*‡ $= 12.6 \pm 0.8$ cm³mol⁻¹, was calculated from the plot of $ln(k_P/k_0)$ versus pressure.

The rate of reaction of $MnO₄$ ⁻ with the homolysis products NO[•] and O_2 ^{--} were determined separately. Figure 3 shows the rate of disappearance of NO[•] (20 μ M) as a function of $MnO₄$ ⁻ concentration (50–250 μ M) under mostly pseudo-

Figure 3. Rate constants for the decay of $MnO₄$ as a function of $MnO₄$ concentration at 20 μ M NO[•], pH 11.7, and 25 °C.

Figure 4. Rate constants for the decay of $MnO₄$ ⁻ as a function of $MnO₄$ ⁻concentration at 30 μ M $O₂$ ⁻, pH 11.7, and 25 °C. The error bars are 2*s*.

first-order conditions; a rate constant of $(3.5 \pm 0.7) \times 10^6$ $M^{-1}s^{-1}$ was obtained. In Figure 4, the rate constant for the reaction of O_2 ⁻⁻ (30 μ M) is plotted as a function of MnO₄⁻ concentration (50-500 μ M). This reaction was investigated by pulse radiolysis with $HCOO^-$ (5-50 mM) irradiated at a dose of 50 Gy to yield O_2 ⁻⁻. The calculated rate constant is $(5.7 \pm 0.9) \times 10^5 \,\mathrm{M}^{-1}\mathrm{s}^{-1}$; because the lowest concentration
of MnO.⁻ does not meet pseudo-first-order conditions it is of $MnO₄$ ⁻ does not meet pseudo-first-order conditions, it is not included in the fit.

The Arrhenius plot in Figure 5 shows the temperature dependence of the rate constant for homoylsis; an activation energy of 102 ± 2 kJ mol⁻¹ was derived, and the frequency factor $A = (1.2 \pm 0.5) \times 10^{16} \text{ s}^{-1}$ was obtained by extrapolation.

The rate constants determined here were used to calculate an equilibrium constant for the homolysis of ONOO-, which could then be combined with values from the literature to generate thermodynamic parameters for ONOO⁻ and ONOOH. These parameters, together with those for nitrate for comparison, are collected in Table 1.

Discussion

We studied the reactions of $MnO₄$ ⁻ with ONOO⁻, NO^{*}, and $O_2^{\bullet-}$. The observed rate constant of $0.020 \pm 0.001 \text{ s}^{-1}$

Figure 5. Arrhenius plot for the homolysis of ONOO⁻ over the temperature range 15–55 °C at 20 *μ*M ONOO⁻, 400 *μ*M MnO₄⁻, and pH
11.7 11.7.

Table 1. Thermodynamic Parameters for Nitrate, Peroxynitrite, and Peroxynitrous Acid

	$\Delta_f G^{\circ}$, kJ mol ⁻¹	ΔH° , kJ mol ⁻¹	S° , J K ⁻¹ mol ⁻¹
NO_3^-	-111.3^a	$-207.4a$	146.4^a
ONOO-	68 ^b	$-43c$	89 ^b
	67d		
	69 ^e	-42^e	96 ^e
	69 ^f		
ONOOH	31 ^b	-61^{b}	153^b
	30 ^d		
	31 ^f		
	32 ^g		

^a Ref 23. *^b* This work. *^c* Ref 37. *^d* Ref 36. *^e* Ref 6. *^f* Ref 8. *^g* Ref 4.

for the reaction of $ONOO^-$ with MnO_4 ⁻ is quite close to that $(k = 0.017 \text{ s}^{-1})$ reported for the reaction of ONOO⁻
with tetranitromethane⁴ and with the methyl viologen radiwith tetranitromethane⁴ and with the methyl viologen radical.⁸ In the reaction of ONOO⁻ with $MnO₄$ ⁻, both homolysis products, NO[•] and $O_2^{\bullet -}$, are rapidly consumed by the detection reagent. The rate constant we obtained for the reaction of NO[•] with MnO₄⁻, (3.5 \pm 0.7) \times 10⁶ M⁻¹s⁻¹, is in excellent agreement with previously reported values of $3.93 \times 10^{6,16}$ $1.18 \times 10^{6,17}$ and 5.60×10^{6} M⁻¹s⁻¹.¹⁸ For the reaction of O_2 ⁻⁻ with MnO₄⁻, we determined a rate constant of $(5.7 \pm 0.9) \times 10^5$ M⁻¹s⁻¹ at pH 11.7, which is
lower than the earlier published value of $(9.5 \pm 0.8) \times 10^5$ lower than the earlier published value of $(9.5 \pm 0.8) \times 10^5$ $M^{-1}s^{-1}$ at pH 9.4,¹⁹ but the discrepancy may be ascribed to the difference in pH. The results are summarized in Scheme 1. Rate constants ranging from 3.8×10^9 to 1.9×10^{10} $M^{-1}s^{-1}$ have been reported for reaction 2, the formation of peroxynitrite from superoxide and nitrogen monoxide.2,3,7,20-²² Three mechanistically different flash photolysis experiments led to the value of $(1.6 \pm 0.3) \times 10^{10} \text{ M}^{-1} \text{s}^{-1}$ used here;

- (16) Teramoto, M.; Ikeda, M.; Teranishi, H. *Int. Chem. Eng.* **1977**, *17*,
- ²⁶⁵-270. (17) Sada, E.; Kumazawa, H.; Hayakawa, N.; Kudo, I.; Kondo, T. *Chem. Eng. Sci.* **¹⁹⁷⁷**, *³²*, 1171-1175.
- (18) Uchida, S.; Kobayashi, T.; Kageyama, S. *Ind. Eng. Chem. Process Des. De*V*.* **¹⁹⁸³**, *²²*, 323-329.
- (19) Rush, J. D.; Bielski, B. H. J. *Inorg. Chem.* **¹⁹⁹⁵**, *³⁴*, 5832-5838.
- (20) Huie, R. E.; Padmaja, S. *Free Radical Res. Commun.* **¹⁹⁹³**, *¹⁸*, 195- 199.
- (21) Kobayashi, K.; Miki, M.; Tagawa, S. *J. Chem. Soc., Dalton Trans.* **1995**, 2885–2889.
Goldstein, S.: Czar
- (22) Goldstein, S.; Czapski, G. *Free Radical Biol. Med.* **¹⁹⁹⁵**, *¹⁹*, 505- 510.

Scheme 1

ONOOH	$\frac{1.2 s^{-1}}{pH = 3 - 4.5}$	NO ₃ $-$	H ⁺
$-H'$	$\left pK_s = 6.5$	$0.020 s^{-1}$	
ONOO ⁻	$\frac{0.020 s^{-1}}{1.6 \cdot 10^{10} M^{-1} s^{-1}}$	$\left 3.5 \cdot 10^6 M^{-1} s^{-1} \atop + M \cdot 2.0 H^{-1} \right $	$5.7 \cdot 10^5 M^{-1} s^{-1}$
$1.6 \cdot 10^{10} M^{-1} s^{-1}$	$\left 3.5 \cdot 10^6 M^{-1} s^{-1} \atop + 2.0 H^{-1} \right $	$5.7 \cdot 10^5 M^{-1} s^{-1}$	
$1.6 \cdot 10^{10} M^{-1} s^{-1}$	$\left 3.5 \cdot 10^6 M^{-1} s^{-1} \atop + 2.0 H^{-1} \right $	$6.7 \cdot 10^5 M^{-1} s^{-1}$	
$1.6 \cdot 10^{10} M^{-1} s^{-1}$	$\left 3.5 \cdot 10^6 M^{-1} s^{-1} \atop + 2.0 H^{-1} \right $	$6.7 \cdot 10^5 M^{-1} s^{-1}$	

additionally, a pulse radiolysis experiment indicated a rate constant larger than $1 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$.² Given the rate constant of $(1.6 \pm 0.3) \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$ and the concentrations used
in this study. NO^{*} and Os^{*-} are consumed about 2.5 to 25 in this study, $NO[*]$ and $O₂[*]$ are consumed about 2.5 to 25 times faster than ONOO⁻ is formed. Both reactions are favorable: from $E^{\circ}(\text{NO}_2^-$, H₂O/NO[•], 2OH⁻) = -0.46 V,²³
 $E^{\circ}(\text{O}_2/\text{O}_2^{\bullet -})$ = -0.35 V ²⁴ and $E^{\circ}(\text{MnO}_2^{\bullet -})$ m/nO₁²⁻) = +0.56 $E^{\circ}(\text{O}_{2}/\text{O}_{2}) = -0.35 \text{ V}^{24}$ and $E^{\circ}(\text{MnO}_{4}^{-7}\text{MnO}_{4}^{-2}) = +0.56 \text{ V}^{23}$ we calculate Gibbs energy changes for reactions A and V,23 we calculate Gibbs energy changes for reactions 4 and 5 of -88 and -98 kJ/mol, respectively.

$$
MnO_4^- + O_2^{\bullet -} \rightarrow MnO_4^{2-} + O_2 \tag{4}
$$

$$
MnO_4^- + NO^{\bullet} + 2HO^- \to MnO_4^{2-} + H_2O
$$
 (5)

Our observation of an activation volume of 12.6 ± 0.8 $\text{cm}^3 \text{mol}^{-1}$ also supports that bond cleavage in ONOO⁻ is homolytic. The significantly positive volume can be ascribed to desolvation²⁵ and compares well with other known volumes of activation for bond scission in peroxides.²⁶

The Arrhenius plot yields an activation energy of 102 \pm 2 kJ mol⁻¹ for the decomposition of $ONOO^-$ to NO $^{\circ}$ and O_2 ⁻⁻. From an Eyring plot (not shown), we derived an activation enthalpy of 99 \pm 2 kJ mol⁻¹ and an activation entropy of 54 ± 4 J mol⁻¹ K⁻¹. These parameters were used
to calculate a Gibbs activation energy of $83 + 3$ kJ mol⁻¹ at to calculate a Gibbs activation energy of 83 \pm 3 kJ mol⁻¹ at 25 \degree C. According to ab initio calculations, the activation energy for cleavage of the N-O bond lies in the range 90-110 kJ mol^{$-1,27$} The activation energy for the homolysis of

- (23) *CRC Handbook of Chemistry and Physics*; CRC Press: Boca Raton, FL, 2006.
- (24) Wardman, P. *Free Radical Res. Commun.* **¹⁹⁹¹**, *¹⁴*, 57-67.
- (25) van Eldik, R.; Asano, T.; le Noble, W. J. *Chem. Re*V*.* **¹⁹⁸⁹**, *⁸⁹*, 549- 688.
- (26) Antonovskii, V. L.; Zhulin, V. M. *Kinet. Catal.* **²⁰⁰³**, *⁴⁴*, 82-90.
- (27) Fu, Y.; Mou, Y.; Lin, B.-L.; Liu, L.; Guo, Q.-X. *J. Phys. Chem. A* **²⁰⁰²**, *¹⁰⁶*, 12386-12392.

peroxynitrite obtained in this work, although somewhat higher, is comparable to the 93 \pm 7 kJ mol⁻¹ for the N-O scission of O_2NOOH to form NO_2^{\bullet} and HOO^{\bullet} ,²⁸ and for the decay of ONOO⁻ under basic conditions (91 kJ mol^{-1}) .^{29,30} The frequency factor *A*, $(1.2 \pm 0.5) \times 10^{16}$ s⁻¹, also indicates
homolysis, values for which are typically in the range 10^{15} homolysis, values for which are typically in the range 10^{15} - 10^{17} s⁻¹.³¹

We obtained an equilibrium constant *K* of $(1.25 \pm 0.2) \times$ 10^{-12} M for the homolysis of ONOO⁻. From this *K*, we calculate a standard Gibbs energy of 67.9 \pm 0.4 kJ mol⁻¹ for reaction 2, which is significantly different from our earlier estimates.^{5,32,33} $\Delta_f G^{\circ}(\Omega_2^{*-})$ is 33.8 \pm 1.1 kJ mol⁻¹ based on
 $F^{\circ}(\Omega_2/\Omega_2^{*-}) = 350 + 11$ mV²⁴ and $\Delta_f G^{\circ}(\Omega_1)$ and ± 102.0 $E^{\circ}(\text{O}_2/\text{O}_2^{\bullet -}) = 350 \pm 11 \text{ mV}^{24}$ and $\Delta_f G^{\circ}(\text{NO}^{\bullet})$ aq = 102.0
 \pm 0.2 kJ/mol, calculated from $\Delta_f G^{\circ}(\text{NO}^{\bullet})$ g = \pm 86.57 kJ/mol \pm 0.2 kJ/mol, calculated from $\Delta_f G^{\circ} (N\Omega^{\bullet}) g = +86.57$ kJ/
mol³⁴ and a Henry constant of 1.92 × 10⁻³ M/0.100MPa³⁵ mol³⁴ and a Henry constant of 1.92×10^{-3} M/0.100MPa³⁵ at 25 °C, from which follows a $\Delta_f G^{\circ}(\text{ONOO}^-)$ of 68 \pm 1 kJ mol^{-1} , very close to earlier reported values of 69 and 67 kJ mol⁻¹ (Table 1).^{4,8,36} On the basis of the pK_a for ONOOH, 6.5 ± 0.1 ³ we calculate that Δ_f *G*°(ONOOH) = 30.8 \pm 1.2 kJ mol⁻¹. Given the agreement, we recommend $\Delta_f G^{\circ}(\text{ONOO}^-)$ $= 68 \pm 1$ kJ mol⁻¹ and $\Delta_f G^{\circ}$ (ONOOH) $= 31 \pm 1$ kJ mol⁻¹ for further usage.

In conclusion, we determined a rate constant of $0.020 s^{-1}$ for the homolysis of ONOO⁻ to NO[•] and O_2 ^{•-} with MnO₄⁻. The detection with $MnO₄⁻$ is facilitated because the reaction is driven to completion by the simultaneous consumption of both homolysis products.

Acknowledgment. We thank Dr. P. L. Bounds for helpful discussions and linguistic advice. These studies were supported by the ETH Zurich and the Swiss National Foundation.

IC7013978

- (28) Zabel, F. *Z. Phys. Chem.* **¹⁹⁹⁵**, *¹⁸⁸*, 119-142.
- (29) Mere´nyi, G.; Lind, J.; Goldstein, S.; Czapski, G. *J. Phys. Chem. A* **¹⁹⁹⁹**, *¹⁰³*, 5685-5691.
- (30) Kirsch, M.; Korth, H.-G.; Wensing, A.; Sustmann, R.; De Groot, H. *Arch. Biochem. Biophys.* **²⁰⁰³**, *⁴¹⁸*, 133-150.
- (31) Benson, S. W. *Thermochemical Kinetics*; John Wiley & Sons: New York, 1976.
- (32) Koppenol, W. H.; Moreno, J. J.; Pryor, W. A.; Ischiropoulos, H.; Beckman, J. S. *Chem. Res. Toxicol.* **¹⁹⁹²**, *⁵*, 834-842.
- (33) Koppenol, W. H.; Kissner, R. *Chem. Res. Toxicol.* **¹⁹⁹⁸**, *¹¹*, 87-90.
- (34) Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttal, R. L. *J. Phys. Chem. Ref. Data* **¹⁹⁸²**, *¹¹* (Suppl. 2), 37-38.
- (35) Wilhelm, E.; Battino, R.; Wilcock, R. J. *Chem. Re*V*.* **¹⁹⁷⁷**, *⁷⁷*, 219- 262.
- (36) Mere´nyi, G.; Lind, J.; Czapski, G.; Goldstein, S. *Inorg. Chem.* **2003**, *⁴²*, 3796-3800.
- (37) Manuszak, M.; Koppenol, W. H. *Thermochim. Acta* **¹⁹⁹⁶**, *²⁷³*, 11- 15.